MAT 3749 1.1 Handout

Definition
A Field F is a set of objects for which an addition “+” and multiplication “
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” is defined satisfying the following rules:
1. Commutative Laws

[image: image2.wmf]abba

+=+

 and 
[image: image3.wmf]abba

=


2. Associative Laws
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3. Distributive Law
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4.  Zero and One
There are two distinct elements in F, denoted by 0 and 1, such that
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5. Negatives and Inverses
For every 
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, there is an element 
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For every 
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, there is an element 
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) such that 
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Real Numbers R
The set 
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 of Real Numbers is a field.
Example 1
(a) 
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 is a field.
(b) 
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 is not a field.

Ordered Field
A field is an ordered field if there is an relation 
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 defined on it such that

1. Transitive
If 
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2. For every two elements 
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, 
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, exactly one of the following holds.
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3. For any 
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4. For any 
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Real Numbers R
The set 
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 of Real Numbers is an ordered field.
Example 2
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 is a field but not an ordered field.

Upper (Lower) Bounds
A set 
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is bounded above if 
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, called the upper bound of E such that
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If the upper bound M belongs to E, then M is called the maximum element of E, denoted by 
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.
Example 3 

1. Determine which of the following sets are bounded above.

2. Determine which of the following sets have a maximum element.
(a) 
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(b) 
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(c) 
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Archimedean Property

If 
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Density Property

If 
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Least Upper Bounds
A real number M is the least upper bound, or Supremum, of a set 
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if

1. M is an upper bound of E;

2. M is less than or equal to every upper bound of E.
Equivalent Statement

2. If 
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is not an upper bound of E.

Example 4
Show that 
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Example 5
Determine the supremum of 
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The Completeness Axiom
Let E be a non-empty subset of 
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.  

1. If E is bounded above, then E has a least upper bound.
2. If E is bounded below, then E has a greatest lower bound.
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